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Abstract 
 

Driver process models play a central role in the testing, verification, and development of 
automated and autonomous vehicle technologies. Prior models developed from control 
theory and physics-based rules are limited in automated vehicle applications due to their 
restricted behavioral repertoire. Data-driven machine learning models are more capable 
than rule-based models but are limited by the need for large training datasets and their 
lack of interpretability. In this project we developed a novel car following modeling 
approach using active inference, which has comparable behavioral flexibility to data-
driven models while maintaining interpretability. We assessed the proposed model, the 
Active Inference Driving Agent (AIDA), through a benchmark analysis against several 
benchmarks. The models were trained and tested on a real-world driving dataset using a 
consistent process. The testing results showed that the AIDA predicted driving controls 
significantly better than the rule-based Intelligent Driver Model and had similar accuracy 
to the data-driven neural network models in three out of four evaluations. Subsequent 
interpretability analyses illustrated that the AIDA's learned distributions were consistent 
with driver behavior theory and that visualizations of the distributions could be used to 
directly comprehend the model's decision-making process and correct model errors 
attributable to limited training data. 
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Introduction 
The rapid development of automated and connected vehicle technologies has created a 
corresponding demand for models of driver behavior that can be used to calibrate design 
parameters [1, 2], evaluate technologies [3, 4], and refine real-time decision making [5]. To be 
effective in these tasks, driver models must be flexible, generalizable, and interpretable. Model 
flexibility is the ability of the model to mimic nuanced social behavior of human drivers [6]. 
Generalizability is the ability of the model to extend to new environments with minimal modeler 
intervention. Interpretability refers to both a clear connection between model mechanics and 
predicted behavior and a grounding in human psychology [7]. These elements facilitate model 
inspection and diagnostics which are essential for interpretable models [8].  

Car following is an important driving sub-task as it represents a large portion of current driving 
time and crashes involving automated vehicles [9, 10]. Therefore, it is important to develop 
flexible, generalizable, and interpretable car following models for automated vehicles and future 
transportation systems. 

Existing car following models can be partitioned into rule-based models and data-driven models. 
Rule-based models generate acceleration behavior based on a function specified by the modeler. 
Typically, this function is grounded in known observations or driver behavior theory [11]. For 
example, the Intelligent Driver Model (IDM) predicts driver acceleration based on deviations from 
a desired speed and distance headway. While rule-based models have a clear connection between 
model mechanics and predicted behavior, they are limited in their flexibility and generalizability. 
Because the rules in rule-based models are designed to replicate driving behavior in specific 
contexts and depict driver characteristics with small parameter sets, they are limited in the 
behavioral repertoire and in generalizing to scenarios outside of those governed by rules beyond 
their initial rule set. For example, research has shown that rule-based models designed for car 
following do not generalize to emergency scenarios and crashes [12]. Despite these limitations, 
rule-based models are still widely used for automated vehicle analyses and thus offer a valid 
benchmark for new models. 

In contrast to rule-based models, data-driven models learn a function that maps observations or 
features to acceleration behaviors using an algorithm. Recent works have used neural networks 
[13], reinforcement learning [14], and adversarial imitation learning [15] to model car following 
behavior. These approaches have shown considerable flexibility in replicating human behavior, 
however, data-driven models still struggle to reproduce well-known traffic phenomena such as 
stop-and-go oscillation and their generalizability is constrained by the chosen machine learning 
technique. Furthermore, the complexity of existing data-driven models prohibits interpretability 
both in the connection between input and output and in their grounding in human psychology. 
Despite these shortcomings, data-driven models are more generalizable to complex scenarios 
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which are difficult for manual model specification. One important class of data-driven models is 
Behavior Cloning (BC) known for their simplicity and general effectiveness. Neural network-
based BC models have been widely adopted for developing and evaluating automated vehicle 
algorithms and are a common benchmark for evaluating novel data-driven models [16]. 

The relative strengths of rule-based and data-driven approaches suggest that there is a role for 
model structure (to aid in interpretability), especially structure grounded in psychological theory 
and learning from data (to aid in flexibility) in car following model development. The 
incorporation of these two concepts requires a shift to contemporary theories of human cognition. 
One relevant theory is active inference [17,18], a framework developed from Bayesian principles 
of cognition. The central ideas of active inference are that 1) humans have internal probabilistic 
generative models of the environment and that 2) humans leverage their model of the environment 
to make inferences about action courses that reduce surprise in terms of both distance from their 
desired states of the environment and uncertainty. Importantly, these principles have been 
translated into a quantitative framework for modeling human behavior and cognition [19]. The 
quantitative framework includes an explicit representation of agent belief dynamics to facilitate 
agent decision making and action selection in response to observed perceptual signals. Due to this 
structure, the model is fundamentally interpretable (i.e., actions can be traced back to beliefs and 
observations at a given time). On the other hand, the increased complexity and probabilistic nature 
of the model compared to rule-based frameworks also increase its flexibility and potentially its 
generalizability. Recently, the active inference framework has been extended to driving to depict 
driving behavior during emergency scenarios with some success [20, 21]. However, the application 
to broader scenarios has been limited. 

Our goal in this project is to develop an Active Inference Driving Agent (AIDA), evaluate its 
flexibility and generalizability relative to rule-based and data-driven benchmarks, and illustrate 
the interpretability of the model and the resulting insights it provides into car following behavior. 
The details of this work have been described in an article that is currently available as a preprint 
[25]. 

Method 
Active inference [17, 18] is a novel framework for cognition and behavior according to which the 
agent jointly perceives and acts upon the world to minimize the mismatch between perceived vs 
preferred states of the world. The process of developing an Active Inference Driving Agent 
requires model specification, model fitting, and model validation. Model specification requires 
translating Active inference theory to a quantitative framework then identifying observations, 
actions, and model belief updates. 

In this work, we chose to implement the active interference model using a Partially Observable 
Markov Decision Process (POMDP). A POMDP describes a dynamic process in which the state 
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of the environment evolves as a function of the driver action’s and the current state of the driving 
environment. The state of the environment is assumed to be not directly observable but 
obeservations related to the state are available to the driver. This situation is consistent with many 
driving scenarios; for example, while following a lead vehicle a driver may observe brake lights 
and a change in the lead vehicle’s speed but may not observe the reason for the lead vehicle braking 
(e.g., slowing to turn, slowing to prevent a collision). For our AIDA implementation, we specified 
that the driver observations to include the relative velocity between the driver’s vehicle and the 
lead vehicle, the distance to the lead vehicle, and the visual looming (i.e., 𝜏𝜏−1) of the lead vehicle. 
These parameters were selected based on prior driver braking models and driving theory. We 
further specified that the driver’s actions consisted of continuous acceleration input.      

After initial specification, we specified the model action selection process. We based this process 
on existing active inference implementations in other contexts.  In our implementation the driver 
uses the history of driving observations to infer the underlying state of the environment at every 
time step by using Bayes rule (see Figure 1 below), then selects an action that minimizes a quantity 
called free energy (G in Figure 1). Free energy has two components: (i) a measure of pragmatic 
value that quantifies the extent to which the driver’s beliefs about the state of the world resulting 
from implementing a given control action differs from their preferred distribution of the state of 
the world and (ii) a measure of epistemic value defined as a measure of the uncertainty about future 
observations induced by control actions given the driver’s current beliefs about the environment.  

                                                     

Figure 1. Active Inference Driving Agent (AIDA): o = instantaneous observation, a = control action, b = 
instantaneous belief, G = expected free energy 

The specified active inference model contains free parameters associated with the observation 
distributions and belief transition matricies. We learned these parameters from driver behavior 
captured by the INTERACTION dataset. The INTERACTION dataset [22] is a publicly available 
driving dataset recorded using drones on fixed road segments in the USA, Germany, and China. 
The dataset provides a set of time-indexed trajectories of the positions, velocities, and headings of 
each vehicle in the road segment in the map’s coordinate system at a sampling frequency of 10 
Hz, and the vehicle’s length and width for each road segment. The dataset contains a variety of 
traffic behaviors, including car following, free-flow traffic, and merges. We used the trajectories 
from this dataset to estimate the model free parameters using maximum likelihood estimation. 
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In addition to the AIDA model, we trained three comparison algorithms: IDM, BC (BC-MLP), 
and a recursive BC (BC-RNN) using the same maximum likelihood estimation process. These 
models were selected for comparison to understand the differences between AIDA and rule-based 
(i.e., IDM) and data-based (i.e, BC-MLP; BC-RNN) modeling approaches. We compared the 
models according to their accuracy in predicting trajectories and their interpretability.  Note that 
additional details on the model specification, fitting, and evaluation process can be found in [25].  

Results 
Model Interpretability 

Initial insights into the AIDA model input and output connections can be gained by visualizing 
the AIDA components, specifically its policy (Figure 2b), observation distribution (shown in 
Figure 2c), and preference distribution (Figure 2d). These figures show 200 random samples 
from each state of the AIDA’s state-conditioned observation distribution, plotted on each pair of 
observation modalities. Color is used to highlight relevant quantities of interest. 

We further used samples drawn from the INTERACTION dataset, plotted in Figure 2a and 
colored by the recorded accelerations, to facilitate interpreting the AIDA samples. Figure 2b 
illustrates the observation samples by the model’s chosen control actions. The top chart shows 
the samples using distance headway (d; x-axis) by relative velocity to the lead vehicle (∆v ; y-
axis), the middle chart shows distance headway by τ-1 which is defined as the rate of change of 
the visual angle of the lead vehicle from the ego driver’s seat position divided by the angle itself. 
Finally, the bottom chart shows relative velocity by τ-1. The shape of the sampled points matches 
the contour of the empirical dataset (Figure 2a), particularly in the middle and bottom 
visualizations, which suggests that the model’s learned observations align with the recorded 
observations in the dataset. Darker green and red colors correspond to larger acceleration and 
deceleration magnitudes, respectively, and light-yellow color corresponds to near zero control 
inputs. The color gradient at different regions in Figure 2b is consistent with that of the empirical 
dataset shown in Figure 2a. This shows that the model learned a similar observation to action 
mapping as the empirical dataset. The mapping can be interpreted as the tendency to choose 
negative accelerations when the relative speed and τ-1 are negative and the distance headway is 
small, and positive accelerations in the opposite case. Furthermore, the sensitivity of the red and 
green color gradients with respect to distance headway shows that the model tends to accelerate 
whenever there is positive relative velocity, regardless of the distance headway. However, it 
tends to input smaller deceleration at large distance headway for the same level of relative speed. 
Figure 2c shows the observation samples colored by their associated discrete states. The 
juxtaposition of color clusters in the top panel shows that the AIDA learned to categorize 
observations by relative speed and distance headway and its categorization for relative speed is 
more fine-grained at small distance headways and spans a larger range of values. The middle and 
bottom panels show that its categorization of relative speed is highly correlated with τ-1. 
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Figure 2. Visualizations of the dataset and AIDA model components. (a), plot of random observations 
sampled from the dataset; (b), (c), and (d) plot of samples from model. 

 

Statistical Comparison with Rule-based (IDM) and Data-Driven Models (BC). 

Following the recommendations in [23, 24] for evaluating learned control policies, we 
represented the central tendency of a model’s offline prediction and online control performance 
using the interquartile mean (IQM) of the offline mean absolute error (MAE) and online average 
deviation error (ADE). For collision rate, we compute the regular mean instead of IQM to 
account for the collision rate lower bound of 0. The IQMs are computed by 1) ranking all tested 
trajectories by their respective performance metrics and 2) computing the mean of the 
performance metrics ranked in the middle 50%.  

Figure 3 shows the offline evaluation results for each model with the model type on the x- 
axis and the IQMs of acceleration prediction MAEs averaged across the testing dataset on 
the y-axis. The color of the points in the figure represents the testing condition and each 
point corresponds to a random seed’s result. The points are randomly distributed around 
each x-axis label for clarity. Dispersion on the y-axis indicates sensitivity in the model to 
initial training conditions. The plot illustrates that the AIDA had the lowest MAE-IQM in 
the same-lane tests, followed by BC-RNN, BC-MLP, and IDM. T 
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Figure 3. Offline evaluation MAE-IQM. Each point corresponds to a random seed used to initialize model 
training and its color corresponds to the testing condition of either same-lane or new-lane. 

Figure 4 shows the IQM of each model’s ADEs from data set trajectories in the online 
evaluations using the same format as the offline evaluation results. In the same-lane testing 
condition, all models had an ADE-IQM values between 1.8 m and 2.8 m, which is less than 
the length of a standard sedan (approx. 4.8 m). Among all models, BC-MLP achieved the 
lowest ADE values for both the same-lane and new-lane conditions, followed by the AIDA, 
IDM, and BC-RNN.  
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Figure 4. Online evaluation ADE-IQM. Each point corresponds to a random seed used to initialize model 
training and its color corresponds to the testing condition of either same-lane or new-lane. 

 

To compare the central performance difference between the AIDA and baseline models, we 
performed two-sided Welch’s t-tests with 5 percent rejection level on the MAE-IQM and ADE-
IQM values computed from different random seeds with the assumption that the performance 
distributions between two models may have different variances. These are reported in [25]. 

Discussion 
In this project, we introduced and evaluated a novel active inference model of driver car 
following behavior (AIDA). The proposed AIDA significantly outperformed the IDM and neural 
network BC models in offline predictions in the same-lane condition and outperformed the IDM 
while performing similarly to BC models in the new-lane condition. Additionally, the AIDA 
achieved significantly lower average deviation error than the rules-based model IDM and data-
driven model BC-RNN in the online control settings. However, the results showed that the AIDA 
was sensitive to initial training conditions, which resulted in higher rates of lead vehicle 
collisions in the same-lane condition compared to the IDM and BC-MLP. While BC had 
comparable or better performance than the AIDA in action prediction and control, the AIDA is 
substantially more interpretable than BC models. In contrast to approximate explanatory methods 
for BC neural networks, we showed that the AIDA’s decision making process can be directly 
accessed by sampling and visualizing the AIDA distributions. Further, we illustrated how the 
AIDA’s joint belief and action trajectories could be used to understand model errors and correct 
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them. This level of understanding and diagnostic analysis is central to real world model 
inspection and verification which are essential components of interpretability. 
 
These results partially confirm our hypothesis that balancing the relative strengths of 
rule-based and data-driven models, specifically using the active inference framework, results 
in better predictions of driver behavior and more nuanced understanding of driver cognitive 
dynamics during car following. In contrast to fixed rule-based models like the IDM, the AIDA 
can incorporate additional "rules" in its state and policy priors while maintaining the 
flexibility provided by its probabilistic representation. In contrast to purely data-driven models, 
learning in the AIDA is constrained by its probability distributions and structure. This balance 
preserves interpretability but still allows the model to be flexible to new data. Our findings 
here suggest that this flexibility comes at a cost of sensitivity to local optima in the training 
process as evidenced by the collision rates across random seeds in online evaluations.  
Our findings here extend prior applications of active inference theory in driving and 
driver models and illustrate the value of rule-based modeling.  
 
Our work is limited by the following aspects. First, we have assumed three driver observation 
modalities: distance headway, relative speed, and τ-1 with respect to the lead vehicle. However, 
human drivers are known to monitor other surrounding vehicles while driving and have broader 
visual sampling. Second, our parameterization of discrete states has limited the expressivity of 
the model and prevented inductive biases such as the smoothness of physical dynamics from 
being encoded. The limited dataset coverage, e.g., the lack of crashes, prevented the learned 
dynamics from generalizing to some out-of-distribution scenarios. The combination of model 
and data insufficiency led to the difficulty of recognizing near-crash states and resulted in 
substantially more lead vehicle crashes than BC and the IDM. 
 

Conclusions and Recommendations 
We proposed a novel active inference model of driver behavior (AIDA). Using car following 
data, we showed that the AIDA significantly outperformed the rule-based IDM on all metrics 
and performed comparably with the data-driven neural network benchmarks. Using an 
interpretability analysis, we showed that the structure of the AIDA provides superior 
transparency of its input-output mechanics than the neural network models. Future work should 
focus on training with data from more diverse driving environments and examining model 
extensions that can capture heterogeneity across drivers. 
 
While we anticipate incorporating additional observations and higher state space dimension and 
application to alternative driving scenarios to be easy under the current model formulation, doing 
so would impose additional requirements on dataset quality and diversity. We thus recommend 
future work to consider general methods for incorporating domain knowledge in more expressive 
generative models to combat dataset limitations and modeling heterogeneity in naturalistic driver 
behavior. The results here suggest that these extensions may alleviate many of the current model 
limitations. 

Additional Products 
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